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ON THE POSSIBILITY OF LOCAL BUCKLING OF THE SURFACE

OF AN ELASTIC HALF-SPACE UNDER COMPRESSION

UDC 539.3V. G. Trofimov

The possibility of local buckling of the free surface of the lower half-plane under compression is studied
in a static formulation within the framework of plane deformation. It is shown that in some media
small subcritical strains can lead to local buckling of the half-plane surface. It is found that two forms
of local surface buckling correspond to one critical compression load.
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Biot [1] was the first to study the instability of the generally free surface of a half-plane for an incompressible
medium. The instability of the generally free surface of the lower half-plane under compression was studied in [2].
The local axisymmetric buckling of the surface of an elastic half-space under compression was the subject of research
in [3].

The present paper is concerned with studying the local buckling of the free surface of the lower half-plane
under compression in a static formulation. Surface buckling is investigated assuming plane deformation with small
homogeneous subcritical strains.

The elastic half-space is compressed along the Ox1 axis by forces of intensity p. The Ox2 axis is perpendicular
to the free surface.

The linearized equations of stability against the displacement perturbations W1(x1, x2) and W2(x1, x2) for
orthotropic solids are written as [2]

a11W1,11 + G12W1,22 + (a12 + G12)W2,12 = 0,

(a12 + G12)W1,21 + (G12 − p)W2,11 + a22W2,22 = 0,
(1)

where a11, a12 = a21, a22, and G12 are the elastic coefficients; differentiation is denoted by subscripts after a comma.
System (1) should be supplemented by the boundary conditions on the free surface (x2 = 0)

σ22(x1, 0) = 0, σ21(x1, 0) = 0 (2)

and the elastic relations

σ11 = a11W1,1 + a12W2,2, σ22 = a21W1,1 + a22W2,2, σ12 = σ21 = G12(W1,2 + W2,1).

The local buckling of the free surface is characterized by the fact that the displacement perturbations W1

and W2 should damp with distance from the epicenter of the perturbations over the surface (for x1 → ±∞) and
into the depth from the surface (as x2 → −∞).

We apply the Fourier transformation over the coordinate x1 to the displacement perturbations:

Uj(ξ, x2) =
1√
2π

∞∫
−∞

Wj(x1, x2) exp (iξx1) dx1 (j = 1, 2).
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Fig. 1.

As a result of the Fourier transformation, system (1) becomes

−ξ2a11U1 + G12U1,22 − iξ(a12 + G12)U2,2 = 0,

−iξ(a12 + G12)U1,2 − ξ2(G12 − p)U2 + a22U2,22 = 0.
(3)

The stress perturbations σ22 and σ21 in boundary conditions (2) are expressed in terms of the displacement
perturbations W1 and W2 and, applying the Fourier transformation to the boundary conditions, we obtain

a22U2,2 − iξa21U1 = 0, U1,2 − iξU2 = 0. (4)

System (3) is reduced to one equation for the function U1(ξ, x2):

U1,2222 − 2ξ2aU1,22 + ξ4bU1 = 0, (5)

where a = (a11a22 − (a12 + G12)2 + G12(G12 − p))/(2a22G12); b = a11(G12 − p)/(a22G12).
The displacement perturbations W1 and W2 should damp with distance from the free surface x2 = 0. The

displacement perturbations U1 and U2 should possess the same property. Therefore, the solution of Eq. (5), which
damps as x2 → −∞, has the form

U1(ξ, x2) =

{
C1 exp (ξ(k1x2 + γ)) + C2 exp (ξ(k2x2 + γ)), ξ > 0,

C1 exp (−ξ(k1x2 + γ)) + C2 exp (−ξ(k2x2 + γ)), ξ < 0,
(6)

where C1 and C2 are arbitrary constants and γ is a constant (γ < 0); k1,2 =
√

a±
√

a2 − b.
From system (3) we find U2(ξ, x2), which damps as x2 → −∞:

U2(ξ, x2) = i

{
C1d1 exp (ξ(k1x2 + γ)) + C2d2 exp (ξ(k2x2 + γ)), ξ > 0,

−C1d1 exp (−ξ(k1x2 + γ))− C2d2 exp (−ξ(k2x2 + γ)), ξ < 0,
(7)

where d1 = k1(a1 − a2k
2
1), d2 = k2(a1 − a2k

2
2), a1 = (a11a22 − (a12 + G12)2)/a3, a2 = a22G12/a3, and a3

= (a12 + G12)(G12 − p).
The images of the displacement perturbations (6) and (7) correspond to the originals of the displacement

perturbations

W1(x1, x2) = −
√

2
π

( C1(k1x2 + γ)
x2

1 + (k1x2 + γ)2
+

C2(k2x2 + γ)
x2

1 + (k2x2 + γ)2
)
,

W2(x1, x2) =

√
2
π

( C1d1x1

x2
1 + (k1x2 + γ)2

+
C2d2x1

x2
1 + (k2x2 + γ)2

)
.

(8)

Figure 1 shows the transverse displacement W2(x1, 0) of the free surface.
Substituting solutions (6) and (7) into boundary conditions (4), we obtain a homogeneous system of linear

algebraic equations for arbitrary constants C1 and C2 (for ξ > 0 and ξ < 0, the systems coincide).
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From the condition of existence of nontrivial solutions of the system, we obtain the following characteristic
equation for the critical compressive load p∗:

(k1 + d1)(a22d2k2 − a21)− (k2 + d2)(a22d1k1 − a21) = 0. (9)

From Eq. (9), we obtain the critical compressive load

p1 =
(√

1 +
4a11a22G2

12

(a11a22 − a2
12)2

− 1
) (a11a22 − a2

12)
2

2a11a22G12
,

p2 = (2(a12 + G12)
√

a11a22 − a11a22 − 2a12G12 − a2
12)/G12.

(10)

The smaller of these positive roots gives the critical value p∗.
Reducing system (3) to one equation for the function U2(ξ, x2)

U2,2222 − 2ξ2aU2,22 + ξ4bU2 = 0,

we obtain another form of surface buckling. By analogy with (6) and (7), we have

U1(ξ, x2) = i

{
C1g1 exp (ξ(k1x2 + γ)) + C2g2 exp (ξ(k2x2 + γ)), ξ > 0,

−C1g1 exp (−ξ(k1x2 + γ))− C2g2 exp (−ξ(k2x2 + γ)), ξ < 0,

U2(ξ, x2) =

{
C1 exp (ξ(k1x2 + γ)) + C2 exp (ξ(k2x2 + γ)), ξ > 0,

C1 exp (−ξ(k1x2 + γ)) + C2 exp (−ξ(k2x2 + γ)), ξ < 0,

(11)

where g1 = k1(b1 − b2k
2
1), g2 = k2(b1 − b2k

2
2), b1 = (G12(G12 − p) − (a12 + G12)2)/b3, b2 = a22G12/b3, and

b3 = a11(a12 + G12).
The images of the displacement perturbations (11) correspond to the originals of the displacement pertur-

bations

W1(x1, x2) =

√
2
π

( C1g1x1

x2
1 + (k1x2 + γ)2

+
C2g2x1

x2
1 + (k2x2 + γ)2

)
,

W2(x1, x2) = −
√

2
π

( C1(k1x2 + γ)
x2

1 + (k1x2 + γ)2
+

C2(k2x2 + γ)
x2

1 + (k2x2 + γ)2
)
.

(12)

For this form of surface buckling (Fig. 2), the characteristic equation is

(k2g2 − 1)(a22k1 + a21g1)− (k1g1 − 1)(a22k2 + a21g2) = 0. (13)

The roots of Eq. (13) coincide with the roots of Eq. (10). Hence, one critical compressive loading correspond
to two forms of local surface buckling (8) and (12). We note that the critical compressive load p∗ depends only on
the properties of the medium. Estimation of the critical load p∗ shows that local surface buckling is possible not in
all media. Thus, in an elastic isotropic medium, p∗ corresponds to the load that exceeds the compressive strength
limit for real materials. Hence, local surface buckling cannot occur in isotropic bodies at small subcritical strains.

In [2], it was shown that in an orthotropic medium with a low shear stiffness G12 there may be surface
instability of the surface as a whole, since in this case the critical load p∗ is lower than the compressive strength.
The critical compressive load p∗ obtained in [2] in studies of the surface instability of a generally free surface
coincides with the critical load (10) in the case of local surface buckling.

Thus, in some media there may be local buckling of the surface of a half-plane under compression at small
subcritical strains, and one critical load corresponds to two forms of local surface buckling.
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