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ON THE POSSIBILITY OF LOCAL BUCKLING OF THE SURFACE
OF AN ELASTIC HALF-SPACE UNDER COMPRESSION

V. G. Trofimov UDC 539.3

The possibility of local buckling of the free surface of the lower half-plane under compression is studied
in a static formulation within the framework of plane deformation. It is shown that in some media
small subcritical strains can lead to local buckling of the half-plane surface. It is found that two forms
of local surface buckling correspond to one critical compression load.
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Biot [1] was the first to study the instability of the generally free surface of a half-plane for an incompressible
medium. The instability of the generally free surface of the lower half-plane under compression was studied in [2].
The local axisymmetric buckling of the surface of an elastic half-space under compression was the subject of research
in [3].

The present paper is concerned with studying the local buckling of the free surface of the lower half-plane
under compression in a static formulation. Surface buckling is investigated assuming plane deformation with small
homogeneous subcritical strains.

The elastic half-space is compressed along the Ox; axis by forces of intensity p. The Ox4 axis is perpendicular
to the free surface.

The linearized equations of stability against the displacement perturbations Wy (z1, 22) and Wy (21, 22) for
orthotropic solids are written as [2]

a11Wi11 + GiaWi 22 + (a12 + Gi2)Wa 12 = 0,

(1)
(@12 + G12)Wi21 + (Gi2 — p)Wa 11 + a2eWa 20 =0,

where a1, a1s = as1, a2, and G5 are the elastic coefficients; differentiation is denoted by subscripts after a comma.
System (1) should be supplemented by the boundary conditions on the free surface (x5 = 0)

o22(21,0) = 0, 021(21,0) =0 (2)
and the elastic relations
o =auWiy +a1sWa2, 022 = an Wiy + aeWap, 012 = 021 = Gra(Wiz + Wap).

The local buckling of the free surface is characterized by the fact that the displacement perturbations W3
and Wy should damp with distance from the epicenter of the perturbations over the surface (for z; — +o0) and
into the depth from the surface (as x93 — —00).

We apply the Fourier transformation over the coordinate x; to the displacement perturbations:

Uj(&l‘g) = \/% / Wj(.%‘l,mg) exp (zfxl)dxl (_j = 1,2).
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Fig. 1.

As a result of the Fourier transformation, system (1) becomes
—&%a11U; + G12Uy 92 — i€(ara + G12)Uz 2 = 0,

. (3)
—té(a12 + G12)U1 2 — 52((;12 —p)Us + a22Uz 20 = 0.

The stress perturbations o92 and o1 in boundary conditions (2) are expressed in terms of the displacement
perturbations W; and W5 and, applying the Fourier transformation to the boundary conditions, we obtain

a22Usz2 — i€azn Uy = 0, Uiz — iUz = 0. (4)
System (3) is reduced to one equation for the function U; (£, x2):
Ul 2202 — 262alU7 92 + 40U = 0, (5)

where a = (a11a22 — (a12 + G12)? + G12(G12 — p))/(2a22G12); b = a11(G12 — p)/(a22G12)-

The displacement perturbations Wi and W5 should damp with distance from the free surface zo = 0. The
displacement perturbations U; and Uy should possess the same property. Therefore, the solution of Eq. (5), which
damps as x5 — —o0, has the form

Crexp ({(k1ze +7)) + Coexp (§(koz2 +7)), 20,
Ui(§,22) = (6)
Crexp (=¢(k1z2 +7)) + Carexp (=&(k2z2 + 7)), £ <0,
where C; and Cy are arbitrary constants and v is a constant (v < 0); k12 = vVa=£ Va2 —b.
From system (3) we find U (&, x5), which damps as x5 — —oc:
. Cidy exp (§(k172 + 7)) + Cada exp (§(k2z2 + 7)), §=0,
Uz (&, w2) = (7)
—Oldl exp (—§(k1$2 + ’Y)) - Czdg exp (—f(k‘gl‘g + ’y)), f < 07
where di = ki(a; — a2k%)7 dy = ko(a; — a2k§)7 a; = (an1a22 — (a2 + G12)2)/a37 az = azGia/az, and a3
= (a12 + G12)(G12 — p).
The images of the displacement perturbations (6) and (7) correspond to the originals of the displacement

perturbations
2/ Ci(kixs +7) Ca(kaza +7)
W- =—1/—-
1@, 22) \/; (ﬁ + (rzs T2 T 221 (kaws + 7)2)’

(8)
2 Cldlxl CQdQ-Tl
W =,/2 .
2(21,32) \/; (ﬁ F(kiws +7)2 T S (hawa + 7)2)

Figure 1 shows the transverse displacement Wa(xz1,0) of the free surface.
Substituting solutions (6) and (7) into boundary conditions (4), we obtain a homogeneous system of linear
algebraic equations for arbitrary constants C; and Cs (for £ > 0 and £ < 0, the systems coincide).
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From the condition of existence of nontrivial solutions of the system, we obtain the following characteristic
equation for the critical compressive load p:

(k1 + di1)(agedaks — az1) — (ka2 + do)(agedi k1 — az1) = 0. 9)

From Eq. (9), we obtain the critical compressive load

o= (\/1 n daj1a20G3, _ 1) (a11a22 — a?,)?
( )? 7

2
a11G22 — a5y 2a11022G12

p2 = (2(a12 + G12)V/a11az2 — 11022 — 212Gz — aiy)/Gha.
The smaller of these positive roots gives the critical value p,.
Reducing system (3) to one equation for the function Us (&, x2)

Us 2929 — 26%aUs 92 + £*bU = 0,

we obtain another form of surface buckling. By analogy with (6) and (7), we have

UL(€,22) = i C1g1exp (&(k1za + 7)) + Cags exp (§(kaza + 7)), £>0,

o —Chrg1 exp (—§(k1z2 + 7)) — Caga exp (—&(kaz2 + 7)), € <0, (11)
Un(e,zp) = 4 1 OP Rz 7))+ Cooxp (Elhama +7)),  £20,

2§, 22) = Cyexp (—&(k1xza +7)) + Coexp (—&(kaza + 7)), £ <0,

where g1 = ki(b1 — b2k?), g2 = ko(b1 — b2k3), by = (G12(G12 — p) — (a12 + Gi2)?)/bs, by = a22G12/bs, and
by = a11(a12 + G12).
The images of the displacement perturbations (11) correspond to the originals of the displacement pertur-

bations
2 Cirg171 Cag211
W, (21, 29) = \/>( + )
1(21, 22) m\x? + (kieg +79)2 23+ (kaxg +7)2

2 Cilkaa +7) Ca(kazs +7)
Wa (1, 2) = (J:f—i—(lﬁxz +7)? x%+(k2x2+7>2)'

s
For this form of surface buckling (Fig. 2), the characteristic equation is

(k2g2 — 1)(az2k1 + az191) — (k1g1 — 1)(az2kz + as1g2) = 0. (13)
The roots of Eq. (13) coincide with the roots of Eq. (10). Hence, one critical compressive loading correspond
to two forms of local surface buckling (8) and (12). We note that the critical compressive load p, depends only on
the properties of the medium. Estimation of the critical load p, shows that local surface buckling is possible not in
all media. Thus, in an elastic isotropic medium, p, corresponds to the load that exceeds the compressive strength
limit for real materials. Hence, local surface buckling cannot occur in isotropic bodies at small subcritical strains.
In [2], it was shown that in an orthotropic medium with a low shear stiffness Gy there may be surface
instability of the surface as a whole, since in this case the critical load p, is lower than the compressive strength.
The critical compressive load p, obtained in [2] in studies of the surface instability of a generally free surface
coincides with the critical load (10) in the case of local surface buckling.
Thus, in some media there may be local buckling of the surface of a half-plane under compression at small
subcritical strains, and one critical load corresponds to two forms of local surface buckling.
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